11  Matrix Calculations

Published

January 6, 2025

This entire section is only appropriate if you’ve already had linear algebra.

11.1 Objectives

  • Understand how to do matrix algebra in relevant programming languages

While R and Python are extremely powerful statistical programming languages, the core of most programming languages is the ability to do basic calculations and matrix arithmetic. As almost every dataset is stored as a matrix-like structure (data sets and data frames both allow for multiple types, which isn’t quite compatible with more canonical matrices), it is useful to know how to do matrix-level calculations in whatever language you are planning to use to work with data.

In this section, we will essentially be using our programming language as overgrown calculators.

11.2 Matrix Operations

Table 11.1: Table of common mathematical and matrix operations in R and Python [1].
Operation R Python
Addition + +
Subtraction - -
Elementwise Multiplication * *
Division / /
Modulo (Remainder) %% %
Integer Division %/% //
Elementwise Exponentiation ^ **
Matrix/Vector Multiplication %*% np.dot()
Matrix Exponentiation ^ np.exp()
Matrix Transpose t(A) np.transpose(A)
Matrix Determinant det(A) np.linalg.det(A)
Matrix Diagonal diag(A) np.linalg.diag(A)
Matrix Inverse solve(A) np.linalg.inv(A)

11.2.1 Basic Mathematical Operators

x <- 1:10
y <- seq(3, 30, by = 3)

x + y
##  [1]  4  8 12 16 20 24 28 32 36 40
x - y
##  [1]  -2  -4  -6  -8 -10 -12 -14 -16 -18 -20
x * y
##  [1]   3  12  27  48  75 108 147 192 243 300
x / y
##  [1] 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333
##  [8] 0.3333333 0.3333333 0.3333333
x^2
##  [1]   1   4   9  16  25  36  49  64  81 100
t(x) %*% y
##      [,1]
## [1,] 1155
import numpy as np

x = np.array(range(1, 11))
y = np.array(range(3, 33, 3)) # python indexes are not inclusive

x + y
## array([ 4,  8, 12, 16, 20, 24, 28, 32, 36, 40])
x - y
## array([ -2,  -4,  -6,  -8, -10, -12, -14, -16, -18, -20])
x * y
## array([  3,  12,  27,  48,  75, 108, 147, 192, 243, 300])
x / y
## array([0.33333333, 0.33333333, 0.33333333, 0.33333333, 0.33333333,
##        0.33333333, 0.33333333, 0.33333333, 0.33333333, 0.33333333])
x ** 2
## array([  1,   4,   9,  16,  25,  36,  49,  64,  81, 100])
np.dot(x.T, y)
## 1155

11.2.2 Matrix Operations

Other matrix operations, such as determinants and extraction of the matrix diagonal, are similarly easy:

mat <- matrix(c(1, 2, 3, 6, 4, 5, 7, 8, 9), nrow = 3, byrow = T)
mat
##      [,1] [,2] [,3]
## [1,]    1    2    3
## [2,]    6    4    5
## [3,]    7    8    9
t(mat) # transpose
##      [,1] [,2] [,3]
## [1,]    1    6    7
## [2,]    2    4    8
## [3,]    3    5    9
det(mat) # get the determinant
## [1] 18
diag(mat) # get the diagonal
## [1] 1 4 9
diag(diag(mat)) # get a square matrix with off-diag 0s
##      [,1] [,2] [,3]
## [1,]    1    0    0
## [2,]    0    4    0
## [3,]    0    0    9
diag(1:3) # diag() also will create a diagonal matrix if given a vector
##      [,1] [,2] [,3]
## [1,]    1    0    0
## [2,]    0    2    0
## [3,]    0    0    3
import numpy as np
mat = np.array([[1, 2, 3],[6, 4, 5],[7, 8, 9]], dtype = int, order ='C')

mat
## array([[1, 2, 3],
##        [6, 4, 5],
##        [7, 8, 9]])
mat.T
## array([[1, 6, 7],
##        [2, 4, 8],
##        [3, 5, 9]])
np.linalg.det(mat) # numerical precision...
## 18.000000000000004
np.diag(mat)
## array([1, 4, 9])
np.diag(np.diag(mat))
## array([[1, 0, 0],
##        [0, 4, 0],
##        [0, 0, 9]])
np.diag(range(1, 4))
## array([[1, 0, 0],
##        [0, 2, 0],
##        [0, 0, 3]])

11.2.3 Matrix Inverse

The other important matrix-related function is the inverse. In R, A^-1 will get you the elementwise reciprocal of the matrix. Not exactly what we’d like to see… Instead, we use the solve() function. The inverse is defined as the matrix B such that AB = I where I is the identity matrix (1’s on diagonal, 0’s off-diagonal). So if we solve(A) (in R) or solve(A, diag(n)) in SAS (where n is a vector of 1s the size of A), we will get the inverse matrix. In Python, we use the np.linalg.inv() function to invert a matrix, which may be a bit more linguistically familiar.

mat <- matrix(c(1, 2, 3, 6, 4, 5, 7, 8, 9), nrow = 3, byrow = T)

minv <- solve(mat) # get the inverse

minv
##            [,1]       [,2]       [,3]
## [1,] -0.2222222  0.3333333 -0.1111111
## [2,] -1.0555556 -0.6666667  0.7222222
## [3,]  1.1111111  0.3333333 -0.4444444
mat %*% minv 
##      [,1] [,2] [,3]
## [1,]    1    0    0
## [2,]    0    1    0
## [3,]    0    0    1
import numpy as np
mat = np.array([[1, 2, 3],[6, 4, 5],[7, 8, 9]], dtype = int, order ='C')

minv = np.linalg.inv(mat)
minv
## array([[-0.22222222,  0.33333333, -0.11111111],
##        [-1.05555556, -0.66666667,  0.72222222],
##        [ 1.11111111,  0.33333333, -0.44444444]])
np.dot(mat, minv)
## array([[ 1.00000000e+00,  0.00000000e+00,  1.11022302e-16],
##        [-8.88178420e-16,  1.00000000e+00, -5.55111512e-16],
##        [ 0.00000000e+00,  2.22044605e-16,  1.00000000e+00]])
np.round(np.dot(mat, minv), 2)
## array([[ 1.,  0.,  0.],
##        [-0.,  1., -0.],
##        [ 0.,  0.,  1.]])

11.3 References

[1]
Quartz25, Jesdisciple, H. Röst, D. Ross, L. D’Oliveiro, and BLibrestez55, Python Programming. Wikibooks, 2016 [Online]. Available: https://en.wikibooks.org/wiki/Python_Programming. [Accessed: May 28, 2022]